Integrating Pharmacogenomics into Decision Making

Munir Pirmohamed

David Weatherall Chair of Medicine and NHS Chair of Pharmacogenetics

Department of Molecular and Clinical Pharmacology Institute of Translational Medicine

University of Liverpool

Definitions

Pharmacogenetics (after Vogel, 1957)

The study of variations in DNA sequence as related to drug response

Pharmacogenomics (after Marshall, 1997)

The study of variations of DNA and RNA characteristics as related to drug response

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

ICH Topic E15, November 2007

> PGx is a part of the drive towards precision medicine

Regulatory Decision Making

PERSPECTIVE

Pharmacogenomic information in drug labels: European Medicines Agency perspective

F Ehmann¹, L Caneva¹, K Prasad^{2,3}, M Paulmichl^{2,4}, M Maliepaard^{2,5,6}, A Llerena^{2,7}, M Ingelman-Sundberg⁸ and M Papaluca-Amati¹

The Pharmacogenomics Journal (2015) 15, 201–210

- 15% of EMA evaluated medicines containing PGx information
 - Therapeutic indication (3.5%)
 - Posology and method of administration(4.4%)
 - Contraindications (6.4%)

Number of PGx biomarkers increasing

EMA SmPCs With MandatoryGenomic TestingThe Pharmacog

The Pharmacogenomics Journal (2015), 1-10

nco

Name	INN	Year of approval	PGx biomarker	Indication		
SmPC section Ther Herceptin	rapeutic indications (section 4.1) Trastuzumab	2000	HER2	Stomach neoplasms Breast neoplasms		
Tyverb Afinitor	Lapatinib Everolimus	2008 2009		Breast neoplasms Carcinoma, renal cell pancreatic neoplasms, breast neoplasms		
Kadcyla Perjeta	Trastuzumab emtansine Pertuzumab	2013 2013		Breast neoplasms Breast neoplasms		
Ziagen Trizivir Kivexa	Abacavir Abacavir/lamivudine/zidovudine Abacavir/lamivudine	1999 2000 2004	HLA-B*5701	HIV infections		
Tarceva Iressa Giotrif Erbitux	Erlotinib Gefitinib Afatinib Cetuximab	2005 2009 2013 2004	EGFR EGFR EGFR EGFR RAS	Non-small-cell lung carcinoma pancreatic neoplasms Non-small-cell lung carcinoma Non-small-cell lung carcinoma Colorectal neoplasms Head and neck neoplasms		
Vectibix	Panitumumab	2007	RAS	Colorectal neoplasms		
Glivec	Imatinib	2001	BCR-ABL Kit <i>CD117</i> FIP1L1-PDGFR	Chronic myelogenous leukaemia Gastrointestinal stromal tumours Myelodysplastic-myeloproliferative diseases Dermatofibrosarcoma Precursor cell lymphoblastic leukaemia-lymphoma	Oply 2 drugs outsid	
				Hypereosinophilic syndrome	Only 5 ulugs outside	
Sprycel	Dasatinib	2006	BCR-ABL	Chronic myelogenous leukaemia precursor cell lymphoblastic leukaemia-lymphoma	the cancer area	
Tasigna	Nilotinib	2007	BCR-ABL	Chronic myelogenous leukaemia		
Bosulif	Bosutinib	2013	BCR-ABL	Myelogenous leukaemia		
actavis, medac)	imatinid	2013	Kit CD117 FIP1L1-PDGFR	Myelodysplastic-myeloproliferative diseases Dermatofibrosarcoma Precursor cell lymphoblastic leukaemia-lymphoma Hypereosinophilic syndrome		
Iclusig	Ponatinib	2013	T315I mutation BCR-ABL	Lymphoid leukaemia Myeloid leukaemia		
Zelboraf Tafinlar	Vemurafenib Dabrafenib	2012 2013	BRAF V600	Melanoma		
Adcetris Xalkori Kalydeco Caprelsa Trisenox	Brentuximab vedotin Crizotinib Ivacaftor Vandetanib Arsenic trioxide	2012 2012 2012 2012 2012 2002	CD30 ALK CFTR <i>G551D</i> <i>RET</i> mutation PML-RAR-α t(15;17)	Hodgkin disease lymphoma (non-Hodgkin) Non-small-cell lung carcinoma Cystic fibrosis Thyroid neoplasms Acute promyelocytic leukaemia	MRC Centre for Drug Safety Sci	

Comparing cytochrome P450 pharmacogenetic information available on United States drug labels and European Union Summaries of Product Characteristics

J Reis-Pardal¹, A Rodrigues², E Rodrigues³ and F Fernandez-Llimos⁴

The Pharmacogenomics Journal (2016), 1–6

US labels:

- Presented more PGx
 subheadings (51 vs 26%)
- More prevalence and PK data for each phenotype
- More information about dose modification
- Need for more harmonization

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

Drug Safety Science

Original Investigation

Clinical Evidence Supporting Pharmacogenomic Biomarker Testing Provided in US Food and Drug Administration Drug Labels

Bo Wang, PharmD; William J. Canestaro, MSc; Niteesh K. Choudhry, MD, PhD

JAMA Intern Med. 2014;174(12):1938-1944.

- 119 drug-biomarker combinations
- 43 (36.1%) had convincing clinical validity evidence
- 18 (15.1%) evidence of clinical utility
- 61 labels (51.3%) clinical decisions based on results of biomarker test: 36 (30%) contained convincing clinical utility data

"It may be premature to include biomarker testing recommendations in drug labels when convincing data that link testing to patient outcomes do not exist."

Drug Development and Companion Diagnostics

- Co-development of targeted drug with a companion diagnostic
- Usually evidence based on randomised controlled trials and reflected in the label
- Guidance available from EMA and FDA

Looking to the future:

- With single biomarkers, tests from multiple providers can pose issues in terms of analytic validity
- We may be moving from single biomarkers to biomarker panels or ultimately to next generation sequencing
- Regulation of such multiple biomarker panels will be challenging single provider, multiple providers etc?
- Debate on how to regulate next generation sequencing.

New Cystic Fibrosis Drug Offers Hope, at a Price

- New CF drug, ivacaftor
- Targets G551D mutation in the CFTR gene (4% of CF population)
- Fantastic innovation with increases in FEV1 ~10%
- 200 scientists
- 600,000 compounds screened
- *In silico* screening of 2.7 million compounds
- 3 possible candidates

Indication expanded in 2014: G178R, S549N, S549R, G551S, G1244E,

S1251N, S1255P, and G1349D

SCIENCE VOL 335 10 FEBRUARY 2012

The Evidence Hierarchy

- RCTs are top of the hierarchy
- Challenges:
 - Smaller populations
 - Multiple mutations
 - Cost
 - Existing drugs

Patient-centric trials for therapeutic development in precision oncology

Andrew V. Biankin^{1,2,3,4}, Steven Piantadosi⁵ & Simon J. Hollingsworth⁶

- Novel trial designs acceptability for registration
- Umbrella trial investigation of single tumour type but stratification by different mutations linked to specific candidate drugs
- Basket study in multiple tumour types but with a focus on one or few biomarkers

THE WOLFSON

UNIVERSITY OF

Associations of Serious Adverse Drug Reactions with HLA Alleles

Carbamazepine Hypersensitivity

- More complicated than abacavir hypersensitivity
- Different phenotypes
 - Skin (mild \rightarrow blistering)
 - Liver
 - Systemic (DRESS)
- Predisposition varies with ethnicity and phenotype
 - HLA-B*1502 (Chinese)
 - HLA-A*3101 (Caucasian)

HLA Genotype and Carbamazepine-Induced Cutaneous Adverse Drug Reactions: A Systematic Review

VL Yip¹, AG Marson², AL Jorgensen³, M Pirmohamed¹ and A Alfirevic¹

	HLA-B*1502 po	sitive	HLA-B*1502 Neg	gative		Odds ratio		Odds ratio	
Study or subgroup	Events	Total	Events	Total	Weight	M-H, random, 95% Cl	Year	M–H, random, 95% Cl	
1.1.1 Han Chinese									_
Hung 2006	59	65	1	139	13.8%	1357.00 [159.84, 11520.40]	2006		e e
Wu 2010	8	12	0	46	7.0%	175.67 [8.64, 3570.35]	2010		ł
Liao 2010	6	22	0	60	7.4%	47.67 [2.55, 890.45]	2010		
Zhang 2011	16	18	1	20	10.2%	152.00 [12.59, 1834.92]	2010		4
Wang 2011 Subtotal (95% Cl)	9	20 137	0	69 334	7.4% 45.7%	114.83 [6.25, 2110.92] 236.24 [71.72, 778.11]	2011		
Total events	98		2						
Heterogeneity: $\tau^2 = 0.05$;)	$c^2 = 4.11$, df = 4 (F	² = 0.39);	$I^2 = 3\%$						
Test for overall effect: Z=	8.99 (<i>P</i> < 0.00001)							
1.1.2 Thai									
Locharernkul 2008	6	14	0	34	7.1%	52.76 [2.70, 1031.31]	2008	│ ———→	(
Tassaneeyakul 2010	37	42	5	42	36.2%	54.76 [14.62, 205.13]	2010		
Kulkantrakorn 2012 Subtotal (95% Cl)	6	13 69	0	33 109	7.1% 50.4%	58.07 [2.94, 1147.12] 54.92 [17.94, 168.14]	2011		
Total events	49		5					-	
Heterogeneity: $\tau^2 = 0.00$;)	$\ell^2 = 0.00$, df = 2 (F	² = 1.00);	$I^2 = 0\%$						
Test for overall effect: Z=	7.02 (P < 0.00001)							
1.1.3 Malaysian									
Then 2011 Subtotal (95% CI)	6	6 6	0	8	3.8% 3.8%	221.00 [3.85, 12694.65] 221.00 [3.85, 12694.65]	2011		
Total events	6		0						
Test for overall effect: $Z = 3$	able 2.61 (<i>P</i> = 0.009)								
Total (95% CI)		212		451	100.0%	113.39 [51.24,250.97]		•	
Total events	153		7					Ť	
Heterogeneity: $\tau^2 = 0.00$: τ	$c^2 = 7.43$, df = 8 (F	= 0.49):	$I^2 = 0\%$					· · · · · · · ·	i i
Test for overall effect: Z=	11.67 (P < 0.0000)1)						0.001 0.1 1 10 10	00
Test for subgroup different	ces: $\chi^2 = 3.17$, df :	= 2(P = 0)		HLA-B*1502 less likely HLA-B*1502 more likely					

HLA-B*1502

The NEW ENGLAND JOURNAL of MEDICINE

HOME ARTICLES*

ISSUES * SPECIALTIES & TOPICS *

Keyword, Title,

ORIGINAL ARTICLE

HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans

Mark McCormack, B.A., Ana Alfirevic, M.D., Ph.D., Stephane Bourgeois, Ph.D., John J. Farrell, M.S., Dalia Kasperavičiūtė,
Ph.D., Mary Carrington, Ph.D., Graeme J. Sills, Ph.D., Tony Marson, M.B., Ch.B., M.D., Xiaoming Jia, M.Eng., Paul I.W. de Bakker,
Ph.D., Krishna Chinthapalli, M.B., B.S., Mariam Molokhia, M.B., Ch.B., Ph.D., Michael R. Johnson, D.Phil., Gerard D. O'Connor,
M.R.C.P.I., Elijah Chaila, M.R.C.P.I., Saud Alhusaini, M.B., Kevin V. Shianna, Ph.D., Rodney A. Radtke, M.D., Erin L. Heinzen,
Ph.D., Nicole Walley, B.S., Massimo Pandolfo, M.D., Ph.D., Werner Pichler, M.D., B. Kevin Park, Ph.D., Chantal Depondt, M.D.,
Ph.D., Sanjay M. Sisodiya, M.D., Ph.D., David B. Goldstein, Ph.D., Panos Deloukas, Ph.D., Norman Delanty, B.M., Gianpiero L.

Cavalleri, Ph.D., and Munir Pirmohamed, Ph.D., F.R.C.P. N Engl J Med 2011; 364:1134-1143 March 24, 2011

N Engl J Med 2011;364:1134-43.

FOR AUTHORS *

- Replicated in Japanese,
 Chinese, South Korean,
 Canadian and EU
 populations
- NNT = 47
 - SmPC/drug label changed (for information). NOT MANDATORY

Cost-effectiveness of screening for HLA-A*31:01 prior to initiation of carbamazepine in epilepsy

*Catrin O. Plumpton, †Vincent L. M. Yip, †Ana Alfirevic, †Anthony G. Marson, †Munir Pirmohamed, and *Dyfrig A. Hughes

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE Epilepsia 2015

Treating Patients with Renal Impairment

- Degree of dose reduction based on PK (occasionally with PD) modelling
- RCTs not usually done
- Accepted as standard practice by clinicians
- Implementation helped by ready availability of renal function tests
- Genetic polymorphism with the same effect size usually not acted upon
- Lack of availability of tests may be one factor

U-PGx | Ubiquitous Pharmacogenomics

- €15 million, H2020, 10 EU countries
- Implement pre-emptive PGx testing in a real world clinical setting across 7 EU sites
- Evaluate patient outcome and cost effectiveness using solid scientific methodology
- Start 1-1-2016, 5 years
- Consortium members:
 - H-J Guchelaar (Coordinator),
 - JJ Swen, M Kriek, LUMC
 - M Pirmohamed, R Turner, UOL
 - J Stingl, FDMD
 - M Ingelman-Sundberg, KI
 - M Karlsson, S Jönsson, PBUU
 - M Schwab, E Schaeffeler, IKP
 - VHM Deneer STZHM
 - M Samwald, G Sunder-Plassmann, MUWV

- M van Rhenen, KC Cheung, KNMP
- C Mitropoulou, GHXF
- D Steinberger, BIOL
- CL Davila Fajardo, SAS
- G Patrinos, UPAT
- V Dolžan, ULMF
- A Cambon-Thomsen, UPS
- G Toffoli, E Cecchin, CROA

U-PGx | Ubiquitous Pharmacogenomics

100,000 Genomes Project in England

- A transformational project for the NHS to embed genomic medicine into practice
- 100,000 genomes from 70,000 individuals
- Accompanied by Genomics **England Clinical Interpretation** Partnerships (to undertake research) - GeCIP
- Pharmacogenomics sub-domain GeCIP to explore issues related to PGx variants

About the 100K Genome Project

We are a new company set up by the Department of Health to help deliver the 100k Genome Project first announces by the Prime Minister David Cameron in December 2012.

This project will sequence the personal DNA code – known as a genome – of up to 100,000 patients over the next five years. This unrivalled knowledge will help doctors' understanding, leading to better and earlier diagnosis and personalised care. Based on expert scientific advice, we will start by tackling cancer, rare diseases and infectious diseases.

The company will manage contracts for sequencing, data linkage and analysis, and set standards for patient conse

"The UK will become the first ever country to introduce this technology in its mainstream health system."

Genomics England was announced by Jeremy Hunt, Secretary of State for Health, as part of the NHS 65th birthday celebrations on 5 July 2013.

He said: "The NHS has a long track record as a leader in medical science advances and it must continue to push the boundaries by unlocking the power of DNA data.

"The UK will become the first ever country to introduce this technology in its mainstream health system leading the global race for better tests, better drugs and above all better, more personalised care to save live

"Genomics England will provide the investment and leadership needed to dramatically increase the use of this technology and drive down costs."

David Cameron

Rt Hon Jeremy Hunt MR

The Only Thing That Is Constant Is Change

Heraclitus (535BC - 475BC)

